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1. Introduction

In the last years, new measurements of heavy-quarkonium decay observables, mainly com-

ing from BABAR, BELLE, BES, CLEO and the Fermilab experiments have improved our

knowledge of inclusive, electromagnetic and several exclusive decay channels as well as of

several electromagnetic and hadronic transition amplitudes. The new data and improved

error analyses of the several correlated measurements have not only led to a sizeable reduc-

tion of the uncertainties but also, in some cases, to significant shifts in the central values [1].

Such data call for comparable accuracies in the theoretical determinations.

The main mechanism of quarkonium decay into light particles is quark-antiquark an-

nihilation. It happens at a scale which is twice the heavy-quark mass M . Since this scale

is perturbative, quark-antiquark annihilation may be described by an expansion in the
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strong-coupling constant αs. Experimentally this fact is reflected into the narrow widths

of the quarkonia below the open flavor threshold. The bound-state dynamics, instead, is

characterized by scales that are smaller than M . While we may not necessarily rely on an

expansion in αs to describe it, we may take advantage of the non-relativistic nature of the

bound state and expand in the relative heavy-quark velocity v. Decay-width formulas may

be organized in a double expansion in αs, calculated at a large scale of the order of M , and

in v. In the bottomonium system, typical reference values are αs(Mb) ≈ 0.2, v2
b ≈ 0.1 and

in the charmonium one, αs(Mc) ≈ 0.35, v2
c ≈ 0.3. We will call relativistic all corrections of

order v or smaller with respect to the leading decay-width expression.

S-wave quarkonium decays into lepton pairs are known within a few percent uncer-

tainty. Theoretical accuracies of about 5% in the charmonium case and of about 1% in

the bottomonium one require the calculation of O(v4, αs v2, α2
s ) corrections. Two photon

decays are not so well known. The ηc → γγ width is known with an accuracy of 35%, the

χc0 → γγ width with an accuracy of 20% and the χc2 → γγ width with an accuracy of

10% [2]. Nevertheless, in the P-wave case, the improvement has been dramatic over the

last few years: the errors quoted in the 2000 edition of the Review of Particle Physics were

70% for the χc0 → γγ case and 30% for the χc2 → γγ case [3]. Theoretical accuracies

matching the experimental ones require the calculation of O(v2, αs) corrections.

In this work, we consider relativistic corrections of order v4 and order v2 to electro-

magnetic decays of S and P wave respectively. Since the leading-order S-wave decay width

is proportional to the square of the wave function in the origin, it is of order v3. Since

the leading order P-wave decay width is proportional to the square of the wave-function

derivative in the origin, it is of order v5. Therefore, both corrections of order v4 to S-wave

decays and of order v2 to P-wave decays provide decay widths at order v7.

In the S-wave case, corrections of order v2 and v4 were first considered in [4] and [5]

respectively. We agree with their results if we use their power counting, but we find three

new contributions using our different counting. Moreover, we resolve an ambiguity in

the matching coefficients of the operators contributing at order v4. In the P-wave case,

corrections of order v2 were first calculated in [6]. Our results disagree with those in [6].

We find that we need two operators less to describe the decay widths at that order.

This work is partially based on [7]. We refer to it for some detailed derivations.

The paper is organized in the following way. In section 2, we set up the formalism,

discuss the power counting and introduce our basis of operators. In section 3, we perform

the matching. We also discuss the cancellation of the infrared singularities in the matching

of the octet operators. In section 4, we conclude by discussing applications and further

developments of this work. In appendix A and B, we list all the operators and the matching

coefficients that have been employed throughout the paper.

2. Decay widths in NRQCD

2.1 NRQCD

In the effective field theory (EFT) language of non-relativistic QCD (NRQCD), the annihi-

lation of quarkonium is described by four-fermion operators [4]. The decay width factorizes

– 2 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
9

in a high-energy contribution encoded in the imaginary parts of the four-fermion matching

coefficients and a low-energy contribution encoded in the matrix elements of the four-

fermion operators evaluated on the heavy-quarkonium state. The NRQCD factorization

formula for the electromagnetic decay width of a quarkonium H is

Γ(H → em) = 2
∑

n

Im c
(n)
em

Mdn−4
〈H|O

(n)
4-f em|H〉. (2.1)

In this work, H → em stands either for H → γγ or for H → e+e−. |H〉 is a dimension

−3/2 normalized eigenstate of the NRQCD Hamiltonian with the quantum numbers of

the quarkonium H. O
(n)
4-f em is a generic four-fermion operator of dimension dn. The “em”

subscript means that we have singled out the electromagnetic component by projecting onto

the QCD vacuum state |0〉. The general form of O
(n)
4-f em is ψ†(· · · )χ |0〉 〈0|χ†(· · · )ψ, were ψ

is the Pauli spinor that annihilates a quark and χ is the one that creates an antiquark. The

operators (· · · ) may transform as singlets or octets under SU(3) gauge transformations. A

list of four-fermion operators is provided in appendix A. The coefficients c
(n)
em encode the

high-energy contributions to the electromagnetic annihilation processes, which have been

integrated out from the EFT. At variance with [4], we will not label differently coefficients

that stem from decays into γγ or e+e−. The coefficients are calculated in perturbation

theory by matching Green functions or physical amplitudes in QCD and NRQCD. It is the

purpose of this work to calculate Im c
(n)
em for operators up to dimension 10.

2.2 Power counting

In the factorization formula (2.1), the matching coefficients c
(n)
em are series in αs while the

matrix elements 〈H|O
(n)
4-f em|H〉 are series in v and are, in general, non-perturbative objects.

It is not possible to attribute a definite power counting to the matrix elements because

of the several contributing energy scales, as it is typical in a non-relativistic system: Mv,

Mv2, . . . . Whatever power counting one assumes, as long as v ¿ 1, operators of higher

dimensionality are suppressed by powers of v.

In the following, we will assume Mv to be of the same order as the typical hadronic

scale ΛQCD and adopt the following counting. Matrix elements of the type 〈H ′|O|H〉, where

O|H〉 and |H ′〉 have the same quantum numbers and color transformation properties in the

dominant Fock state, scale (at leading order) like (Mv)d−3, d being the dimension of the

operator O. If O|H〉 and |H ′〉 do not have the dominant Fock state with the same quantum

numbers, then the matrix element singles out a component of the quarkonium Fock state

that is suppressed. The amount of suppression depends on the power counting and on the

quantum numbers. Let us consider a component in |H ′〉 that shows up as a first-order

correction to a singlet quarkonium state with orbital angular momentum L, spin S and

total angular momentum J . The correction is induced by an operator F of dimension dF :

∑

S′,L′,J ′

|2S′+1L′
J ′〉

〈2S′+1L′
J ′ |

1

MdF−4
F |2S+1LJ〉

E − E′ . (2.2)
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This gives a nonvanishing contribution to the matrix element 〈H ′|O|H〉 if for some S′, L′

and J ′ the matrix element in (2.2) does not vanish and if there is a Fock state of O|H〉 with

the same quantum numbers as |2S′+1L′
J ′〉. In case this is the dominant Fock state of O|H〉,

the suppression factor with respect to the naive scaling, (Mv)d−3, is MvdF−3/(E − E′).

As an example, we consider the dimension 5 operator F = ψ†i ta g ~Aa · ~∂ψ +c.c., where

ta are the color matrices in the fundamental representation and c.c. stands for “charge

conjugated” (ψ → iσ2χ∗, ta Aa
µ → −(ta Aa

µ)T ). Inserted in (2.2), it projects onto an

octet state with quantum numbers L′ = L ± 1 and S′ = S. Color octet quark-antiquark

states may appear in the quarkonium spectrum combined with gluons to form hybrids.

Gluonic excitations of this kind are expected to develop a mass gap of order ΛQCD, hence

E−E′ ∼ ΛQCD ∼ Mv. As a consequence, in a quarkonium state the octet component with

quantum numbers S and L ± 1 is suppressed by v with respect to the singlet component

with quantum numbers S and L. Note that to generate a D-wave component (L = 2)

from a S-wave state we need two operator insertions and second-order perturbation theory.

Hence, this is suppressed by v2 with respect to the S-wave component.

A similar counting holds if we consider the dimension 5 operator F = ψ† ta g ~Ba · ~σψ +

c.c.. Inserted in (2.2), it projects onto an octet state with quantum numbers L′ = L

and S′ = S ± 1. Thus, also the octet component with quantum numbers S ± 1 and L is

suppressed by v with respect to the singlet component with quantum numbers S and L.

The power counting adopted here is the most conservative one in the framework of

NRQCD. This is the reason for our choice. The price we pay is that some observables will

depend on more matrix elements than they would in a different counting. An example of

alternative power counting, which seems better suited for the situation Mv2 ∼ ΛQCD, is

provided by ref. [4]. For a critical review and a discussion on the different power countings

we refer to [8] and references therein.

2.3 Four-fermion operators

The four-fermion sector of the NRQCD Lagrangian contains all four-fermion operators

invariant under gauge transformations, rotations, translations, charge conjugation, parity

and time inversion. They may be classified according to their dimensionality and color

content. Moreover, it is useful to decompose them in terms of irreducible spherical tensors.

Some of the operators are redundant because they may be expressed in terms of others by

means of field redefinitions. Finally, the power counting introduced in the previous section

sets the relevance of the different operators in the decay width formulas. We will address

all these issues in the following.

2.3.1 Operators from dimension 6 to 10

The NRQCD operators may be organized according to their dimensionality. Four-fermion

operators of dimension 6 were considered in [4]. For dimensional reasons, they cannot

depend on the gluon fields. The only allowed color structures are 1lc ⊗ 1lc and ta ⊗ ta.

However, since we are considering electromagnetic decays whose final state is the QCD

vacuum, the ta ⊗ ta structure is forbidden.
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Parity conservation forbids four-fermion operators of dimension 7. Four-fermion op-

erators of dimension 8 may be built with two covariant derivatives [4], or with a chromo-

magnetic field, like, for instance,

ψ†g ~B · ~σχ|0〉〈0|χ†ψ + H.c., (2.3)

where H.c. stands for Hermitian conjugated. The operator describes a (spin-flipping) octet

to singlet QQ̄ pair transitions. The same operator with a chromoelectric field instead of

the chromomagnetic one is forbidden by parity conservation.

Operators of dimension 9 may involve a covariant derivative and a chromoelectric field,

like, for instance,

ψ†←→D · ~σχ|0〉〈0|χ†g ~E · ~σψ + H.c.. (2.4)

The same operator with a chromomagnetic field instead of the chromoelectric one is for-

bidden by parity conservation.

Dimension 10 operators may involve either four covariant derivatives, or two covariant

derivatives and a chromomagnetic field, like, for instance,

ψ†g ~B ·
←→
D χ|0〉〈0|χ†←→D · ~σψ + H.c., (2.5)

or two gluon fields.

2.3.2 Irreducible spherical tensors

All the tensorial structures that are consistent with the discrete symmetries and rotational

invariance are allowed. So, for instance, besides eq. (2.3) also the following operator is

possible

ψ†g ~Bχ|0〉〈0|χ†~σψ + H.c.. (2.6)

It is useful to decompose Cartesian tensors into irreducible spherical tensors. This

allows a classification of the operators in terms of angular-momentum quantum numbers:
2S+1LJ , where S is the spin, L the orbital and J the total angular momentum.

According to 3 ⊗ 3 = 5 ⊕ 3 ⊕ 1, a tensor made of two vectors ~A and ~B may be

decomposed as

AiBj = A(iBj) +
AiBj − AjBi

2
+

δij

3
~A · ~B, (2.7)

where

A(iBj) =
AiBj + AjBi

2
−

δij

3
~A · ~B, (2.8)

is a symmetric and traceless tensor belonging to the representation L = 2 of the rotational

group, and the last two terms of eq. (2.7) are tensors transforming respectively as L = 1 and

L = 0 spherical harmonics. So, for instance, besides eq. (2.4) also the following operator

has to be considered

ψ†←→D (iσj)χ|0〉〈0|χ†g ~E(iσj)ψ + H.c.. (2.9)

Note that a symmetric tensor Sij may be decomposed, according to 6 = 5⊕ 1, into

Sij = S(ij) +
δij

3
Skk, (2.10)

where S(ij) is a traceless symmetric tensor.
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Therefore, from (5⊕ 1)⊗ 3 = 7⊕ 5⊕ 3⊕ 3, a tensor made of a symmetric tensor Sij

and a vector ~A may be decomposed into

SijAk = S((ij)Ak) +
εiklδjm + εjklδim

3

(

εlnpS(mn)Ap +
εlmpS(np)An

2

)

−
3

10

(

2

3
δijδlk − δkjδil − δkiδjl

)

S(ml)Am +
δij

3
SmmAk, (2.11)

were S((ij)Ak) stands for a tensor symmetric with respect to the indices i, j and k, and

such that all partial traces (obtained contracting two of the three indices) are equal to zero:

S((ij)Ak) =
1

3

(

S(ij)Ak + S(ik)Aj + S(jk)Ai
)

−
2

15

(

δijδlk + δikδlj + δjkδli
)

S(ml)Am.

(2.12)

The second term in eq. (2.11) transforms like a L = 2 spherical harmonics. Note that

εlnpS(mn)Ap + εlmpS(np)An/2 is symmetric in the indices l and m and traceless. The third

and fourth terms in eq. (2.11) transform like vectors.

As an application, we may use eq. (2.11) to decompose the tensor

(

−
i

2

←→
D i

)(

−
i

2

←→
D j

)(

−
i

2

←→
D k

)

(2.13)

into irreducible spherical tensors. If we treat the covariant derivatives as ordinary ones,

the tensor, being completely symmetric, has 10 independent components. According to

10 = 7 ⊕ 3, it may be decomposed into a L = 3 tensor

T
(3)
ijk =

(

−
i

2

)2 ←→
D (i←→D j)

(

−
i

2

←→
D k

)

−
2

5

(

−
i

2

)

←→
D (iδj)k

(

−
i

2

←→
D

)2

, (2.14)

where A(iδj)k = Aiδjk/2 + Ajδik/2 − Akδij/3, and a tensor that transforms like a L = 1

representation of the rotational group:

T
(1)
ijk =

1

5

(

δijδlk + δkjδil + δkiδlj
)

(

−
i

2

←→
D l

)(

−
i

2

←→
D

)2

. (2.15)

From these we may construct the four-fermion operators listed in eq. (A.9):

Pem(3P0) =
1

2
ψ†T

(1)
ijkσ

kχ|0〉〈0|χ† δij

3

(

−
i

2

←→
D · ~σ

)

ψ + H.c., (2.16)

Pem(3P2) =
5

4
ψ†

(

T
(1)
ijk+ T

(1)
jik

2
−

δij

3
T

(1)
llk

)

σkχ|0〉〈0|χ†

(

−
i

2

←→
D (iσj)

)

ψ + H.c., (2.17)

Pem(3P2,
3 F2) =

1

2
ψ†T

(3)
ijkσ

kχ|0〉〈0|χ†

(

−
i

2

←→
D (iσj)

)

ψ + H.c.. (2.18)

2.3.3 Field redefinitions

Operators may be redundant, in the sense that they may be traded for others by means of

suitable field redefinitions. Let us consider the following cases.
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(i) First, we consider the field redefinitions (a is a free parameter)























ψ → ψ +
a

M5

[

(

−
i

2

←→
D

)2

, χ|0〉〈0|χ†

]

ψ

χ → χ −
a

M5

[

(

−
i

2

←→
D

)2

, ψ|0〉〈0|ψ†

]

χ

, (2.19)

which induce the following transformations:

ψ† iD0 ψ + χ† iD0 χ → ψ† iD0 ψ + χ† iD0 χ −
a

M5
T8 em(1S0), (2.20)

ψ†
~D2

2M
ψ − χ†

~D2

2M
χ → ψ†

~D2

2M
ψ − χ†

~D2

2M
χ + 2

a

M6

(

Q′
em(1S0) −Q′′

em(1S0)
)

, (2.21)

where the operator T8 em(1S0) has been defined in eq. (A.7) and the operators Q′
em(1S0)

and Q′′
em(1S0) in eq. (A.8). In eq. (2.21) we have neglected operators proportional to

the center of mass momentum and octet operators, whose matrix elements are subleading

in any power counting. Clearly, for a suitable choice of the parameter a we may elimi-

nate the operator T8 em(1S0) from our basis of operators in exchange for a redefinition of

the matching coefficients of Q′
em(1S0) and Q′′

em(1S0): h′
em(1S0) → h′

em(1S0) + 2a and

h′′
em(1S0) → h′′

em(1S0)− 2a. Note that the sum h′
em(1S0) + h′′

em(1S0) is invariant under the

field redefinition.

(ii) Second, we consider, the field redefinitions















ψ
J
→ ψ +

a

M5
T

(J)
ijlk σl

[(

−
i

2

←→
D i

)(

−
i

2

←→
D j

)

, χ|0〉〈0|χ†

]

σkψ

χ
J
→ χ −

a

M5
T

(J)
ijlk σl

[(

−
i

2

←→
D j

) (

−
i

2

←→
D i

)

, ψ|0〉〈0|ψ†

]

σkχ

, (2.22)

where

T
(0)
ijlk =

δijδlk

3
, (2.23)

T
(1)
ijlk =

εijnεkln

2
, (2.24)

T
(2)
ijlk =

δilδjk + δjlδik

2
−

δijδlk

3
. (2.25)

They induce the following transformations:

ψ† iD0 ψ + χ† iD0 χ
J
→ ψ† iD0 ψ + χ† iD0 χ −

a

M5
T

(J)
8 em(3S1), (2.26)

ψ†
~D2

2M
ψ − χ†

~D2

2M
χ

J =0
−→ ψ†

~D2

2M
ψ − χ†

~D2

2M
χ

+2
a

M6

(

Q′
em(3S1) −Q′′

em(3S1)
)

, (2.27)

ψ†
~D2

2M
ψ − χ†

~D2

2M
χ

J =1
−→ ψ†

~D2

2M
ψ − χ†

~D2

2M
χ

+
1

M6
× (octet operators), (2.28)
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ψ†
~D2

2M
ψ − χ†

~D2

2M
χ

J =2
−→ ψ†

~D2

2M
ψ − χ†

~D2

2M
χ

+2
a

M6

(

Q′
em(3S1,

3 D1) −Q′′
em(3S1,

3 D1)
)

, (2.29)

where the operators T
(J)
8 em(3S1) have been defined in eq. (A.7) and the operators Q′

em(3S1),

Q′′
em(3S1), Q

′
em(3S1,

3 D1) and Q′′
em(3S1,

3 D1) in eq. (A.8). In eqs. (2.27)-(2.29) we have

neglected operators proportional to the center of mass momentum and octet operators.

Again, for a suitable choice of the parameter a we may eliminate the operators T
(J)
8 em(3S1)

from our basis of operators in exchange for a redefinition of the matching coefficients of

Q′
em(3S1), Q

′′
em(3S1), Q

′
em(3S1,

3 D1) and Q′′
em(3S1,

3 D1). Note that h′
em(3S1)+h′′

em(3S1)

and h′
em(3S1,

3 D1) + h′′
em(3S1,

3 D1) are invariant under the field redefinitions.

In [5], it was pointed out that the operators T8 em(1S0) and T8 em(3S1) may be eliminated

in favor of Q′
em(1S0) and Q′′

em(1S0), and Q′
em(3S1) and Q′′

em(3S1) through the use of the

equations of motion. Our argument, which uses field redefinitions instead of equations of

motion, is equivalent [9].

(iii) Finally, we may wonder if there are field redefinitions similar to (2.19) and (2.22)

that allow to eliminate from our basis also the operators T8 em(3PJ) defined in eq. (A.7).

Indeed, such redefinitions exist and are















ψ
J
→ ψ +

a

M5
T

(J)
ijlk σi

(

−
i

2

←→
D j

)

χ|0〉〈0|χ†σl

(

−
i

2

←→
D k

)

ψ

χ
J
→ χ −

a

M5
T

(J)
ijlk σi

(

−
i

2

←→
D j

)

ψ|0〉〈0|ψ†σl

(

−
i

2

←→
D k

)

χ

. (2.30)

However, in this case, they induce the following transformations

ψ† iD0 ψ + χ† iD0 χ
J
→ ψ† iD0 ψ + χ† iD0 χ −

a

M5
T8 em(3PJ) (2.31)

−2
a

M5
T

(J)
ijlk i∂0

(

ψ†σi

(

−
i

2

←→
D j

)

χ

)

|0〉〈0|χ†σl

(

−
i

2

←→
D k

)

ψ,

ψ†
~D2

2M
ψ − χ†

~D2

2M
χ

J
→ ψ†

~D2

2M
ψ − χ†

~D2

2M
χ − 2

a

M6
Pem(3PJ), (2.32)

where in eq. (2.32) we have neglected operators proportional to the center of mass momen-

tum and octet operators. We see that the field redefinitions (2.30) may be useful to trade

the operators T8 em(3PJ ) for T
(J)
ijlk i∂0

(

ψ†σi
(

− i
2

←→
D j

)

χ
)

|0〉 〈0|χ†σl
(

− i
2

←→
D k

)

ψ, but, dif-

ferently from the previous cases, they do not reduce the number of operators. We will keep

T8 em(3PJ) in our basis of operators.

2.3.4 Power counting of the four-fermion operators

From the rules of section 2.2, it follows that

〈H(2S+1LJ)|
1

Md−4
Oem(2S+1LJ)|H(2S+1LJ)〉 ∼ Mvd−3, (2.33)

where |H(2S+1LJ)〉 stands for a quarkonium state whose dominant Fock-space component

is a QQ̄ pair with quantum numbers S, L and J , Oem(2S+1LJ) is a singlet four-fermion
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operator that acts on the QQ̄ pair like a spin S, orbital angular momentum L and total

angular momentum J tensor and d is the dimension of the operator.

Concerning the power counting of the octet matrix elements, first, we consider the

matrix elements of the dimension 8 operators defined in eq. (A.6):

〈H(1S0)|
1

M4
S8 em(1S0)|H(1S0)〉, (2.34)

and

〈H(3S1)|
1

M4
S8 em(3S1)|H(3S1)〉. (2.35)

The operator S8 em(1S0) destroys a singlet QQ̄ pair with quantum number 1S0 and creates

an octet QQ̄ pair with quantum numbers 3S1 and a gluon (and viceversa), the operator

S8 em(3S1) destroys a singlet QQ̄ pair with quantum number 3S1 and creates an octet QQ̄

pair with quantum numbers 1S0 and a gluon (and viceversa). Following the power counting

of section 2.2 the chromomagnetic field scales like (Mv)2, moreover the octet Fock-space

component is suppressed by v. Hence, both matrix elements scale like Mv6.

Equations (A.7) define octet operators of dimension 9. The operator T
(1)′
8 em(3S1) de-

stroys a singlet QQ̄ pair with quantum number 3S1 and creates an octet QQ̄ pair with

quantum numbers 3P1 and a gluon (and viceversa), the operators T8 em(3PJ ) destroy a

singlet QQ̄ pair with quantum number 3PJ and create an octet QQ̄ pair with quantum

numbers 3S1 and a gluon (and viceversa). Following the power counting of section 2.2, the

chromoelectric field scales like (Mv)2 and the covariant derivative like Mv, moreover, since

the octet Fock-space component is suppressed by v, we have

〈H(3S1)|
1

M5
T

(1)′
8 em(3S1)|H(3S1)〉 ∼ Mv7, (2.36)

and

〈H(3PJ )|
1

M5
T8 em(3PJ )|H(3PJ)〉 ∼ Mv7. (2.37)

Matrix elements involving dimension 10 octet operators are negligible at order v7. An

example is the matrix element

〈H(3P0)|
1

M6
ψ† ~B ·

←→
D χ|0〉〈0|χ†←→D · ~σψ|H(3P0)〉 ∼ Mv8. (2.38)

We have kept ambiguous the ordering of the covariant derivatives appearing in some

of the singlet operators of dimension 10. For instance,
←→
D 4 could stand either for (

←→
D 2)2 or

←→
D i←→D 2←→D i or

←→
D i←→D j←→D i←→D j or combinations of them. The ambiguity can only be resolved

by octet operators of dimension 10, which are beyond the present accuracy.

All operators involved in the matching are listed in appendix A.

2.4 Electromagnetic decay widths

Having assumed a power counting and having chosen a basis of operators, we are in the

position to provide explicit factorization formulas for S- and P-wave electromagnetic decay
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widths. Up to order v7, these are

Γ(H(3S1) → e+e−) =
2 Im fem(3S1)

M2
〈H(3S1)|Oem(3S1)|H(3S1)〉

+
2 Im gem(3S1)

M4
〈H(3S1)|Pem(3S1)|H(3S1)〉 +

2 Im s8 em(3S1)

M4
〈H(3S1)|S8 em(3S1)|H(3S1)〉

+
2 Im h′

em(3S1)

M6
〈H(3S1)|Q

′
em(3S1)|H(3S1)〉 +

2 Im h′′
em(3S1)

M6
〈H(3S1)|Q

′′
em(3S1)|H(3S1)〉

+
2 Im gem(3S1,

3 D1)

M4
〈H(3S1)|Pem(3S1,

3 D1)|H(3S1)〉

+
2 Im t

(1)
8 em(3S1)

M5
〈H(3S1)|T

(1)′
8 em(3S1)|H(3S1)〉,

(2.39)

Γ(H(1S0) → γγ) =
2 Im fem(1S0)

M2
〈H(1S0)|Oem(1S0)|H(1S0)〉

+
2 Im gem(1S0)

M4
〈H(1S0)|Pem(1S0)|H(1S0)〉 +

2 Im s8 em(1S0)

M4
〈H(1S0)|S8 em(1S0)|H(1S0)〉

+
2 Im h′

em(1S0)

M6
〈H(1S0)|Q

′
em(1S0)|H(1S0)〉 +

2 Im h′′
em(1S0)

M6
〈H(1S0)|Q

′′
em(1S0)|H(1S0)〉,

(2.40)

Γ(H(3P0) → γγ) =
2 Im fem(3P0)

M4
〈H(3P0)|Oem(3P0)|H(3P0)〉

+
2 Im gem(3P0)

M6
〈H(3P0)|Pem(3P0)|H(3P0)〉 +

2 Im t8 em(3P0)

M5
〈H(3P0)|T8 em(3P0)|H(3P0)〉,

(2.41)

Γ(H(3P2) → γγ) =
2 Im fem(3P2)

M4
〈H(3P2)|Oem(3P2)|H(3P2)〉

+
2 Im gem(3P2)

M6
〈H(3P2)|Pem(3P2)|H(3P2)〉 +

2 Im t8 em(3P2)

M5
〈H(3P2)|T8 em(3P2)|H(3P2)〉.

(2.42)

In (2.39) and (2.40), the first matrix element scales like v3, the second one is suppressed

by v2, the third one by v3 and the other ones by v4. In (2.41) and (2.42), the first matrix

element scales like v5 and the other ones are suppressed by v2.

Some comments are in order. In ref. [5], the matrix elements of the operators

S8 em(3S1), Pem(3S1,
3 D1), T

(1)′
8 em(3S1) and S8 em(1S0) were not included in the expressions of

Γ(H(3S1) → e+e−) and Γ(H(1S0) → γγ) The reason is that in the power counting adopted

there, which is different from the one discussed in section 2.3.4, they were considered to be

suppressed.1

In ref. [6], also the matrix element

〈H(3P2)|G
′
em(3P2)|H(3P2)〉 (2.43)

1We thank G. Bodwin for communications on this point.
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of the operator

G′
em(3P2) =

1

2
ψ†

(

−
i

2

)2 ←→
D (i←→D j)

(

−
i

2

←→
D · ~σ

)

χ|0〉〈0|χ†

(

−
i

2

←→
D (iσj)

)

ψ + H.c. (2.44)

was considered to contribute to eq. (2.42). In the basis of operators given in (A.9), it can

be rewritten as

G′
em(3P2) = Pem(3P2,

3 F2) +
2

5
Pem(3P2). (2.45)

The operator Pem(3P2) contributes, indeed, to the decay width of a 3P2 quarkonium and

its contribution has already been accounted for in eq. (2.42). The question is whether the

operator Pem(3P2,
3 F2) contributes at relative order v4 to the decay width of a quarkonium

whose dominant Fock state has quantum numbers 3P2. In eq. (2.18), we have seen that the

operator acts on one of the quarkonium states with a term proportional to T
(3)
ijkσ

k, where

T
(3)
ijk transforms like a spherical tensor in the L = 3 representation of the rotational group.

The Wigner-Eckart theorem guarantees that the matrix element 〈0|T
(3)
ijkσ

k|3P2〉 vanishes,

because we cannot generate a L = 0 tensor by combining a L = 3 with a L = 1 tensor.

Explicitly, this is reflected by the fact that

〈0|T
(3)
ijkσ

k|3P2〉 ∼

∫

d3p Tr

{(

p(ipj)~p · ~σ −
2

5
p2p(iσj)

)

σnhnk
3P2

(λ) pk

}

= 0, (2.46)

where hij
3P2

(λ) is a symmetric and traceless rank-2 tensor that represents the polarization

of the 3P2 state and the trace is meant over the Pauli matrices.

3. Matching

In this section, we calculate the imaginary parts of the matching coefficients that appear

in eqs. (2.39)-(2.42). The method consists in equating (matching) the imaginary parts of

scattering amplitudes in QCD and NRQCD along the lines of ref. [4].

In the QCD part of the matching, the ingoing quark and the outgoing antiquark are

represented by the Dirac spinors u(~p) and v(~p) respectively, whose explicit expressions are

u(~p) =

√

Ep + M

2Ep

(

ξ
~p·~σ

Ep+M
ξ

)

, v(~p) =

√

Ep + M

2Ep

(

~p·~σ
Ep+M

η

η

)

, (3.1)

where Ep =
√

~p 2 + M2, and ξ and η are Pauli spinors. In the NRQCD part of the matching,

the ingoing quark and the outgoing antiquark are represented by the Pauli spinors ξ and

η respectively.

Since we need to match singlet and octet-singlet transition operators, we consider both

the scattering amplitudes QQ̄ → QQ̄, with two photons or an electron loop as intermediate

states, and QQ̄ g → QQ̄, with two photons or an electron loop as intermediate states and

an external gluon in the initial state.

In the center of mass rest frame, the energy and momentum conservation imposes the

following kinematical constraints on the scattering QQ̄ → QQ̄,

|~p| = |~k|, ~p + ~p ′ = 0, ~k + ~k′ = 0, (3.2)
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Figure 1: QCD Feynman diagrams describing the amplitude QQ̄ → γγ → QQ̄ at leading order.

and on the scattering QQ̄ g → QQ̄,

Ep + Ep′ + |~q| = 2Ek, ~p + ~p ′ + ~q = 0, ~k + ~k′ = 0, (3.3)

where ~p, ~p ′ are the ingoing and ~k, ~k′ the outgoing quark and antiquark momenta, while

~q is the momentum of the ingoing gluon, which is on mass shell. Note that, in the non-

relativistic expansion, the gluon momentum |~q| is proportional to (three-momenta)2/M .

The matching does not rely on any specific power counting and can be performed

order by order in 1/M [10]. We will perform the matching up to order 1/M6, which is the

highest power in 1/M appearing in eqs. (2.39)-(2.42). In practice, we expand the QCD

amplitude with respect to all external three-momenta. In the case of the QQ̄ g → QQ̄

scattering, the expansion in the gluon momentum may develop infrared singularities, i.e.

terms proportional to 1/|~q|. These terms cancel in the matching. We will discuss the

cancellation in section 3.5.

Finally we note that, since the matching does not depend on the power counting

and the scattering amplitudes do not have a definite angular momentum, the matching

determines many more coefficients than needed in eqs. (2.39)-(2.42).

3.1 QQ̄ → γγ

The matching of the QQ̄ → γγ amplitude is performed by equating the sum of the imagi-

nary parts of the QCD diagrams shown in figure 1 (taken by cutting the photon propagators

according to 1/k2 → −2π i δ(k2)θ(k0)) with the sum of all the NRQCD diagrams of the

type shown in figure 2.

We find that

Im fem(1S0) = α2Q4π, (3.4)

Im gem(1S0) = −
4

3
α2Q4π, (3.5)

Im fem(3P0) = 3α2Q4π, (3.6)

Im fem(3P2) =
4

5
α2Q4π, (3.7)

Imhem(1D2) =
2

15
α2Q4π, (3.8)

Im h′
em(1S0) + Im h′′

em(1S0) =
68

45
α2Q4π, (3.9)
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Figure 2: Generic NRQCD four-fermion Feynman diagram. The empty box stands for one of the

four-fermion vertices induced by the operators listed in appendix A, eqs. (A.3)-(A.5) and (A.8)-

(A.10).

Figure 3: QCD Feynman diagram describing the amplitude QQ̄ → e+e− → QQ̄ at leading order.

Im gem(3P0) = −7α2Q4π, (3.10)

Im gem(3P2) = −
8

5
α2Q4π, (3.11)

Im gem(3P2,
3 F2) = −

20

21
α2Q4π, (3.12)

where α is the fine structure constant and Q the charge of the quark. The four-fermion

operators to which the matching coefficients refer are listed in appendix B.

The coefficients of the operators of order 1/M2 and 1/M4 agree with those that may

be found in [4]. Here and in the following, we also refer to [11] and references therein for

an updated list of the imaginary parts of the four-fermion matching coefficients appearing

at order 1/M2 and 1/M4 in the NRQCD Lagrangian. Some of them are known at next-

to-leading and next-to-next-to-leading order. The coefficient Im hem(1D2) agrees with the

result of ref. [12]. Equation (3.9) agrees with the one found in [5]. By matching the diagrams

of figure 1 we cannot resolve Im h′
em(1S0) and Im h′′

em(1S0) separately. Equation (3.10)

agrees with the one found in [6], whereas our evaluation of the coefficients Im gem(3P2) and

Im gem(3P2,
3 F2) disagrees with that one in [6].

3.2 QQ̄ → e+e−

The matching of the QQ̄ → e+e− amplitude is performed by equating the imaginary part

of the QCD diagram shown in figure 3 (the imaginary part of the e+e− pair contribution to

the photon’s vacuum polarization is −α (k2gµν −kµkν)/3) with the sum of all the NRQCD

diagrams of the type shown in figure 2.
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We find that

Im fem(3S1) =
α2Q2π

3
, (3.13)

Im gem(3S1) = −
4α2Q2π

9
, (3.14)

Im gem(3S1,
3 D1) = −

α2Q2π

3
, (3.15)

Imh′
em(3S1) + Im h′′

em(3S1) =
29

54
α2Q2π, (3.16)

Im hem(3D1) =
α2Q2π

12
, (3.17)

Im hem(3D2) = 0, (3.18)

Im hem(3D3) = 0, (3.19)

Im h′
em(3S1,

3 D1) + Im h′′
em(3S1,

3 D1) =
23

36
α2Q2π. (3.20)

The four-fermion operators to which the matching coefficients refer are listed in appendix B.

The coefficients of the operators of order 1/M2 and 1/M4 agree with those that may

be found in [4]. Equation (3.16) agrees with the one found in [5] and eq. (3.17) with

the D-wave decay width calculated in [12]. Equation (3.20) is new. Equations (3.18)

and (3.19) follow from angular momentum conservation. Similarly to the case discussed

above, we note that by matching the diagram of figure 3 we can only determine the sums

Im h′
em(3S1)+Im h′′

em(3S1) and Im h′
em(3S1,

3 D1)+Im h′′
em(3S1,

3 D1) but not the individual

matching coefficients.

3.3 QQ̄ g → γγ

The matching of the QQ̄g → γγ amplitude is performed by equating the sum of the

imaginary parts of the QCD diagrams shown in figure 4 with the sum of all the NRQCD

diagrams of the type shown in figure 5. These are all diagrams of NRQCD with an ingoing

QQ̄ pair and a gluon and an outgoing QQ̄ pair. They can involve singlet four-fermion

operators and a gluon coupled to the quark or the antiquark line, but also four-fermion

operators that couple to gluons. Such operators induce octet to singlet transitions on the

QQ̄ pair; they may be one of the operators listed in eqs. (A.6) and (A.7), but also one of the

four-fermion operators involving only covariant derivatives, which, despite being usually

denoted as singlet operators, couple to the gluon field through the term −ita g ~Aa in the

covariant derivative. An example is the operator

Oem(3P0) =
1

3
ψ†

(

−
i

2

←→
D · ~σ

)

χ|0〉〈0|χ†

(

−
i

2

←→
D · ~σ

)

ψ,

that annihilates (or creates) a 3S1 color-octet pair and a gluon and creates (or annihilates)

a 3P0 color-singlet pair through the term

−
1

3
ψ†

(

−
i

2

←→
D · ~σ

)

χ|0〉〈0|χ†ta g ~Aa · ~σψ + H.c..
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Figure 4: QCD Feynman diagrams describing the amplitude QQ̄ g → γγ → QQ̄ at leading order.

Figure 5: Generic NRQCD four-fermion Feynman diagrams involving an ingoing QQ̄ pair and a

gluon and an outgoing QQ̄ pair. The black box with a gluon attached to it and the empty box

stand respectively for one of the four-fermion-one-gluon vertices and for one of the four-fermion

vertices induced by the operators listed in appendix A, eqs. (A.3)-(A.10). The black dot with a

gluon attached to it stands for one of the quark-gluon vertices induced by the bilinear part of the

NRQCD Lagrangian given in eq. (A.1).

In the basis of section 2.3.3, we obtain

Im s8 em(1S0) = 0, (3.21)

Im h ′
em(1S0) =

10

9
α2Q4π, (3.22)

Im h ′′
em(1S0) =

2

5
α2Q4π, (3.23)

Im t8 em(3P0) = −
3

2
α2Q4π, (3.24)

Im t8 em(3P1) = 0, (3.25)

– 15 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
9

Figure 6: QCD Feynman diagrams describing the amplitude QQ̄ g → e+e− → QQ̄ at leading

order.

Im t8 em(3P2) = 0. (3.26)

The four-fermion operators to which the matching coefficients refer are listed in appendix B.

Equations (3.21)-(3.23) are new. We see that the matching of the amplitude QQ̄ g →

γγ allows to establish the values of the individual coefficients Im h ′
em(1S0) and Im h ′′

em(1S0).

Equations (3.24) and (3.26) disagree with those in [6]. Equation (3.25) follows from the

Landau-Yang theorem.

3.4 QQ̄ g → e+e−

The matching of the QQ̄ g → e+e− amplitude is performed by equating the sum of the

imaginary parts of the QCD diagrams shown in figure 6 with the sum of all the NRQCD

diagrams of the type shown in figure 5.

In the basis of section 2.3.3, we obtain

Im s8 em(3S1) =
1

3
α2Q2π, (3.27)

Im t
(1)
8 em(3S1) =

1

6
α2Q2π, (3.28)

Im h′
em(3S1) =

23

54
α2Q2π, (3.29)

Im h′′
em(3S1) =

1

9
α2Q2π, (3.30)

Im h′
em(3S1,

3 D1) =
5

9
α2Q2π, (3.31)

Im h′′
em(3S1,

3 D1) =
1

12
α2Q2π. (3.32)

The four-fermion operators to which the matching coefficients refer are listed in appendix B.

Equations (3.27)-(3.32) are new. We see that the matching of the amplitude QQ̄ g →

e+e− allows to establish the values of the individual coefficients Imh ′
em(3S1), Im h ′′

em(3S1),

Im h ′
em(3S1,

3 D1) and Im h ′′
em(3S1,

3 D1), whose sums were determined by the QQ̄ → e+e−

matching.

3.5 Cancellation of infrared singularities

Once expanded in the gluon energy |~q|, diagrams with a gluon attached to the external

quark lines generate terms that are proportional to 1/|~q|. They come from the almost
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on-shell heavy-quark propagator that follows the gluon insertion. Such terms, which are

singular for |~q| → 0, cancel in the matching.

Let us consider two graphs like the first (second) and the fifth (sixth) in figure 4 or

those in figure 6. Their sum is proportional to

v̄(~p ′) itagε/ i
−/p′ − q/ + M

(p′ + q)2 − M2
× (. . .) + (. . .) × i

/p + q/ + M

(p + q)2 − M2
itagε/ u(~p), (3.33)

where ~ε is the (transverse) polarization of the external gluon. Both quarks and gluon are

on mass shell, therefore, we may write the denominator as

1

(p + q)2 − M2
=

1

2 (Ep|~q| − ~p · ~q)
.

By using the Dirac equation, we may also simplify the numerators

v̄(~p ′) ε/ (−/p′ + M) = v̄(~p ′)(/p′ + M) ε/ − 2~p ′ · ~ε v̄(~p ′) = −2~p ′ · ~ε v̄(~p ′),

(/p + M) ε/ u(~p) = ε/ (−/p + M)u(~p) + 2~p · ~ε u(~p) = 2~p · ~ε u(~p).

Then eq. (3.33) becomes

(

−~p · g~ε
1

Ep|~q| − ~p · ~q
+ ~p ′ · g~ε

1

Ep′ |~q| − ~p ′ · ~q

)

(

1 + O(|~q|)
)

×Ma, (3.34)

where Ma is the amplitude calculated from the diagrams without gluon insertions but a

color matrix ta inserted between the ingoing quark and antiquark. Equation (3.34) displays

only terms that are singular for |~q| → 0.

In order to show the cancellation of the singular terms in the matching, it is sufficient

to consider in NRQCD the last two diagrams of figure 5, where the gluons couple to the

quark and antiquark through

−ψ†i
tag ~Aa

M
· ~∂

(

1 +
~∂ 2

2M2
+

3

8

~∂4

M4
+ · · ·

)

ψ + c.c.. (3.35)

Equation (3.35) is the one-gluon part of (~D = ~∂ − ita g ~Aa)

δL2-f = ψ†

(

~D2

2M
+

(~D2)2

8M3
+

~D6

16M5
+ · · ·

)

ψ + c.c.. (3.36)

Vertices involving ~E or ~B fields are proportional to ~q. Hence, graphs with such vertices

are not singular for |~q| → 0. In momentum space, the vertex induced by eq. (3.35) on the

quark line of figure 5 is

ita
~p · g~ε

M

(

1 −
p2

2M2
+

3p4

8M4
+ · · ·

)

= ita
~p · g~ε

Ep
; (3.37)

similarly, the vertex induced on the antiquark line is

−ita
~p ′ · g~ε

Ep′
. (3.38)
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The heavy-quark propagator in the second diagram of figure 5 reads

i

Ep + |~q| − Ep+q
=

i

|~q| −
~p · ~q

Ep

(

1 + O(|~q|)
)

; (3.39)

where Ep+q =
√

M2 + (~p + ~q)2; the heavy antiquark propagator in the third diagram of

figure 5 reads
i

Ep′ + |~q| − Ep′+q

=
i

|~q| −
~p ′ · ~q

Ep′

(

1 + O(|~q|)
)

. (3.40)

Finally, the sum of the two diagrams can be written as
(

−~p · g~ε
1

Ep|~q| − ~p · ~q
+ ~p ′ · g~ε

1

Ep′ |~q| − ~p ′ · ~q

)

(

1 + O(|~q|)
)

×Ma
NRQCD, (3.41)

where Ma
NRQCD is the NRQCD amplitude calculated from the diagrams without gluon

insertions but a color matrix ta inserted between the ingoing quark and antiquark. Equa-

tion (3.41) displays only terms that are singular for |~q| → 0.

Since the matching without external gluons guarantees that M = MNRQCD and also

that Ma = Ma
NRQCD, by matching eq. (3.34) with eq. (3.41), all the displayed singular

terms cancel. In general, the non singular terms do not cancel. Indeed, diagrams like

the first (second) and the fifth (sixth) of figure 4 and those in figure 6 contribute to the

matching coefficients of NRQCD.

We have shown by an explicit calculation how infrared singularities cancel in the match-

ing at leading order in αs and to all orders in 1/M . The argument reflects the very general

fact that QCD and NRQCD share the same infrared behaviour.

4. Conclusions

We have performed the matching of the imaginary parts of four-fermion operators up

to dimension 10. The matching enables us to write the electromagnetic S- and P-wave

quarkonium decay widths into two photons or an e+e− pair up to order v7. In the power

counting of section 2.3.4, the result reads

Γ(H(3S1) → e+e−) =
2α2Q2π

3M2
〈H(3S1)|Oem(3S1)|H(3S1)〉

−
8α2Q2π

9M4
〈H(3S1)|Pem(3S1)|H(3S1)〉 +

2α2Q2π

3M4
〈H(3S1)|S8 em(3S1)|H(3S1)〉

+
23α2Q2π

27M6
〈H(3S1)|Q

′
em(3S1)|H(3S1)〉 +

2α2Q2π

9M6
〈H(3S1)|Q

′′
em(3S1)|H(3S1)〉

−
2α2Q2π

3M4
〈H(3S1)|Pem(3S1,

3 D1)|H(3S1)〉 +
α2Q2π

3M5
〈H(3S1)|T

(1)′
8 em(3S1)|H(3S1)〉, (4.1)

Γ(H(1S0) → γγ) =
2α2Q4π

M2
〈H(1S0)|Oem(1S0)|H(1S0)〉

−
8α2Q4π

3M4
〈H(1S0)|Pem(1S0)|H(1S0)〉 +

20α2Q4π

9M6
〈H(1S0)|Q

′
em(1S0)|H(1S0)〉
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+
4α2Q4π

5M6
〈H(1S0)|Q

′′
em(1S0)|H(1S0)〉, (4.2)

Γ(H(3P0) → γγ) =
6α2Q4π

M4
〈H(3P0)|Oem(3P0)|H(3P0)〉

−
14α2Q4π

M6
〈H(3P0)|Pem(3P0)|H(3P0)〉 −

3α2Q4π

M5
〈H(3P0)|T8 em(3P0)|H(3P0)〉, (4.3)

Γ(H(3P2) → γγ) =
8α2Q4π

5M4
〈H(3P2)|Oem(3P2)|H(3P2)〉

−
16α2Q4π

5M6
〈H(3P2)|Pem(3P2)|H(3P2)〉. (4.4)

Equation (4.1) has three extra terms with respect to the result of ref. [5] (these are the

terms proportional to 〈H(3S1)|S8 em(3S1) |H(3S1)〉, 〈H(3S1)|Pem(3S1,
3 D1)|H(3S1)〉 and

〈H(3S1)| T
(1)′
8 em(3S1) |H(3S1)〉), which are due to the different power counting. The other

terms in eq. (4.1) and eq. (4.2) agree with those in [5], where, however, only the sums of

the matching coefficients in front of 〈H(3S1)| Q
′
em(3S1) |H(3S1)〉 and 〈H(3S1)| Q

′′
em(3S1)

|H(3S1)〉, and 〈H(1S0)| Q
′
em(1S0) |H(1S0)〉 and 〈H(1S0)| Q

′′
em(1S0) |H(1S0)〉 were calcu-

lated. The coefficient of 〈H(3P0)| Pem(3P0) |H(3P0)〉 in (4.3) is the same as in [6], whereas

the coefficients of 〈H(3P0)| T8 em(3P0) |H(3P0)〉 in (4.3) and of 〈H(3P2)| Pem(3P2) |H(3P2)〉

in (4.4) are different. Equation (4.4) depends on two matrix elements less than the equiv-

alent equation in [6]. We could only partially trace back the origin of these differences.

However, we stress that, at variance with the S-wave case, in the P-wave one, the differences

with the previous literature cannot be reconciled by a different power counting.

In the case of S-wave decays, eqs. (4.1) and (4.2) provide relativistic corrections with

a few per cent accuracy in the charmonium case and with a few per mil accuracy in the

bottomonium one. At present, the largest uncertainties in the decay widths of the pseu-

doscalars come from next-to-next-to-leading order corrections to the matching coefficient of

the dimension 6 operator and next-to-leading order corrections to the matching coefficient

of the dimension 8 singlet operator, which are both unknown. They are about 10% in the

charmonium case and about 5% in the bottomonium one (in accordance to the values of

αs(M) and v listed in the introduction). In the charmonium case, the theoretical uncer-

tainty is well below the experimental one. In the case of the decay widths of S-wave vectors

in lepton pairs, next-to-next-to-leading order corrections to the matching coefficient of the

dimension 6 operator are known and the dominant uncertainty comes from next-to-leading

order corrections to the matching coefficient of the dimension 8 singlet operator. It is about

10% in the charmonium case and about 2% in the bottomonium one.

In the case of P-wave decays, eqs. (4.3) and (4.4) combined with the next-to-leading

order expressions of Im fem(3P0) and Im fem(3P2) [13] provide a consistent determination

of the electromagnetic widths with an estimated theoretical error that is about 15% in

the charmonium case and about 5% in the bottomonium one. In [14, 1], it was observed

that the inclusion of the next-to-leading order corrections to the matching coefficients alone

(i.e. without relativistic corrections) brings the theoretical determination of the ratio of the

charmonium 3P0 and 3P2 decay widths into two photons rather close to the experimental

one. This supports the assumption that relativistic corrections follow, indeed, the non-
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relativistic power counting in v and are not anomalously large. The same observation,

made for hadronic decay widths [14, 1], urges a complete calculation of the relativistic

corrections for P-wave hadronic decays of quarkonium, which is still missing. A first partial

analysis is in [7].

Equations (4.3) and (4.4) depend on three and two non-perturbative matrix elements

respectively. Spin symmetry relates 〈H(3P0)|Pem(3P0)|H(3P0)〉 to 〈H(3P2)| Pem(3P2)

|H(3P2)〉:

〈H(3P2)|Pem(3P2)|H(3P2)〉 = 〈H(3P0)|Pem(3P0)|H(3P0)〉 (1 + O(v)). (4.5)

The matrix elements 〈H(3P0)| Oem(3P0) |H(3P0)〉 and 〈H(3P2)| Oem(3P2) |H(3P2)〉 sat-

isfy an analogous relation, which, however, is not useful at relative order v2. Therefore,

eqs. (4.3) and (4.4) depend on four independent matrix elements. Since, at present, they

are poorly known, in this work we refrain from phenomenological applications. We remark,

however, that a further reduction in the number of non-perturbative parameters may be

achieved in low energy EFTs like potential NRQCD (pNRQCD), where, in the strongly-

coupled regime, the NRQCD matrix elements factorize in the quarkonium wave function

and in few correlators of gluonic fields [15]. The completion of the P-wave hadronic de-

cay width calculation at order v7 in NRQCD is the first step towards a complete analysis

of both electromagnetic and hadronic relativistic corrections in the framework of the pN-

RQCD factorization. Besides direct lattice evaluations of the matrix elements [16], such an

analysis has the potential to constrain the non-perturbative parameters enough to provide

theoretical determinations matching the precision of the data.
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A. Summary of NRQCD operators

The two-fermion sector of the NRQCD Lagrangian relevant for the matching discussed in

section 3 is:

L2-f = ψ†

(

iD0 +
~D2

2M
+

~σ · g ~B

2M
+

(~D · g ~E)

8M2
−

~σ · [−i ~D×, g ~E]

8M2
+

(~D2)2

8M3
+

{~D2, ~σ · g ~B}

8M3

−
3

32M4
{~D2, ~σ · [−i ~D×, g ~E]} +

3

32M4
{~D2, (~D · g ~E)} +

~D6

16M5

)

ψ

+ c.c., (A.1)

where σi are the Pauli matrices, iD0 = i∂0 − ta gAa
0, i ~D = i~∇ + ta g ~Aa, [ ~D×, ~E] = ~D ×

~E − ~E × ~D, Ei = F i0 and Bi = −εijkF
jk/2 (ε123 = 1). We have not displayed terms of
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order 1/M6 or smaller and matching coefficients of O(αs) or smaller. Equation (A.1) can

be obtained by matching the QCD scattering amplitude of a quark on a static background

gluon field along the lines of ref. [17]. Note that in [17] the matching coefficient of the

operator {~D2, ~σ · [−i ~D×, g ~E]}/M4 is off by a factor 1/2. The right value may be found in

ref. [18].

The general structure of the four-fermion sector of the NRQCD Lagrangian projected

on the QCD vacuum is:

Lem
4-f =

∑

n

c
(n)
em

Mdn−4
O

(n)
4-f em. (A.2)

Here, we list the operators relevant for the matching performed in section 3 ordered by

dimension (
←→
D =

−→
D −

←−
D).

Operators of dimension 6

Oem(1S0) =ψ†χ|0〉〈0|χ†ψ,

Oem(3S1) =ψ†~σχ|0〉〈0|χ†~σψ.
(A.3)

Operators of dimension 8

Pem(1S0) =
1

2
ψ†

(

−
i

2

←→
D

)2

χ|0〉〈0|χ†ψ + H.c.,

Pem(3S1) =
1

2
ψ†~σχ|0〉〈0|χ†~σ

(

−
i

2

←→
D

)2

ψ + H.c.,

Pem(3S1,
3 D1) =

1

2
ψ†σiχ|0〉〈0|χ†σj

(

−
i

2

)2 ←→
D (i←→D j)ψ + H.c..

(A.4)

Oem(1P1) =ψ†

(

−
i

2

←→
D

)

χ|0〉〈0|χ†

(

−
i

2

←→
D

)

ψ,

Oem(3P0) =
1

3
ψ†

(

−
i

2

←→
D · ~σ

)

χ|0〉〈0|χ†

(

−
i

2

←→
D · ~σ

)

ψ,

Oem(3P1) =
1

2
ψ†

(

−
i

2

←→
D × ~σ

)

χ|0〉〈0|χ†

(

−
i

2

←→
D × ~σ

)

ψ,

Oem(3P2) =ψ†

(

−
i

2

←→
D (iσj)

)

χ|0〉〈0|χ†

(

−
i

2

←→
D (iσj)

)

ψ.

(A.5)

S8 em(1S0) =
1

2
ψ†g ~B · ~σχ|0〉〈0|χ†ψ + H.c.,

S8 em(3S1) =
1

2
ψ†g ~Bχ|0〉〈0|χ†~σψ + H.c..

(A.6)
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Operators of dimension 9

T8 em(1S0) =
1

2
ψ†χ|0〉〈0|χ†(

←→
D · g ~E + g ~E ·

←→
D )ψ + H.c.,

T
(0)
8 em(3S1) =

1

6
ψ†~σχ|0〉〈0|χ†~σ(

←→
D · g ~E + g ~E ·

←→
D )ψ + H.c.,

T
(1)
8 em(3S1) =

1

4
ψ†~σχ|0〉〈0|χ†~σ × (−

←→
D × g ~E − g ~E ×

←→
D )ψ + H.c.,

T
(1)′
8 em(3S1) =

1

4
ψ†~σχ|0〉〈0|χ†~σ × (

←→
D × g ~E − g ~E ×

←→
D )ψ + H.c.,

T
(2)
8 em(3S1) =

1

2
ψ†σiχ|0〉〈0|χ†σj(

←→
D (ig ~Ej) + g ~E(i←→D j))ψ + H.c.,

T8 em(3P0) =
1

6
ψ†

(←→
D · ~σ

)

χ|0〉〈0|χ†~σ · g ~Eψ + H.c.,

T8 em(3P1) =
1

4
ψ†

(←→
D × ~σ

)

χ|0〉〈0|χ†~σ × g ~Eψ + H.c.,

T8 em(3P2) =
1

2
ψ†

(←→
D (iσj)

)

χ|0〉〈0|χ†σ(igEj)ψ + H.c..

(A.7)

Operators of dimension 10

Q′
em(1S0) =ψ†

(

−
i

2

←→
D

)2

χ|0〉〈0|χ†

(

−
i

2

←→
D

)2

ψ,

Q′′
em(1S0) =

1

2
ψ†

(

−
i

2

←→
D

)4

χ|0〉〈0|χ†ψ + H.c.,

Q′
em(3S1) =ψ†

(

−
i

2

←→
D

)2

~σχ|0〉〈0|χ†

(

−
i

2

←→
D

)2

~σψ,

Q′′
em(3S1) =

1

2
ψ†

(

−
i

2

←→
D

)4

~σχ|0〉〈0|χ†~σψ + H.c.,

Q′
em(3S1,

3 D1) =
1

2
ψ†

(

−
i

2

)2 ←→
D (i←→D j)σiχ|0〉〈0|χ†σj

(

−
i

2

←→
D

)2

ψ + H.c.,

Q′′
em(3S1,

3 D1) =
1

2
ψ†

(

−
i

2

←→
D

)2 (

−
i

2

)2 ←→
D (i←→D j)σiχ|0〉〈0|χ†σjψ + H.c..

(A.8)

Pem(1P1) =
1

2
ψ†

(

−
i

2

←→
D

)2 (

−
i

2

←→
D i

)

χ|0〉〈0|χ†

(

−
i

2

←→
D i

)

ψ + H.c.,

Pem(3P0) =
1

6
ψ†

(

−
i

2

←→
D · ~σ

)(

−
i

2

←→
D

)2

χ|0〉〈0|χ†

(

−
i

2

←→
D · ~σ

)

ψ + H.c.,

Pem(3P1) =
1

4
ψ†

(

−
i

2

←→
D × ~σ

)(

−
i

2

←→
D

)2

χ|0〉〈0|χ†

(

−
i

2

←→
D × ~σ

)

ψ + H.c.,

Pem(3P2) =
1

2
ψ†

(

−
i

2

)

←→
D (iσj)

(

−
i

2

←→
D

)2

χ|0〉〈0|χ†

(

−
i

2

←→
D (iσj)

)

ψ + H.c.,

Pem(3P2,
3 F2) =

1

2
ψ†

(

−
i

2

)2 ←→
D (i←→D j)

(

−
i

2

←→
D · ~σ

)

χ|0〉〈0|χ†

(

−
i

2

←→
D (iσj)

)

ψ

−
1

5
ψ†

(

−
i

2

)

←→
D (iσj)

(

−
i

2

←→
D

)2

χ|0〉〈0|χ†

(

−
i

2

←→
D (iσj)

)

ψ + H.c..

(A.9)
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Qem(1D2) =ψ†

(

−
i

2

)2 ←→
D (i←→D j)χ|0〉〈0|χ†

(

−
i

2

)2 ←→
D (i←→D j)ψ,

Qem(3D3) =ψ†

(

−
i

2

)2 ←→
D ((i←→D j)σl)χ|0〉〈0|χ†

(

−
i

2

)2 ←→
D ((i←→D j)σl))ψ,

Qem(3D2) =
2

3
ψ†

(

−
i

2

)2 (

εilm←→
D (j←→D l)σm +

1

2
εijl←→D (m←→

D l)σm

)

χ|0〉

× 〈0|χ†

(

−
i

2

)2 (

εinp←→D (j←→D n)σp +
1

2
εijn←→D (p←→D n)σp

)

ψ,

Qem(3D1) =ψ†

(

−
i

2

)2 ←→
D (i←→D j)σiχ|0〉〈0|χ†

(

−
i

2

)2 ←→
D (l←→D j)σlψ.

(A.10)

B. Summary of matching coefficients

In the following, we list all imaginary parts of the matching coefficients of the electromag-

netic four-fermion operators up to dimension 10, calculated at O(1) in the strong coupling

constant in section 3. The matching coefficients refer to a basis of operators from where

T8(
1S0), T

(0)
8 (3S1), T

(1)
8 (3S1) and T

(2)
8 (3S1) have been removed by suitable field redefini-

tions.

Operator of dim. 6 Matching coefficient Im (Value)

Oem(1S0) Im fem(1S0) α2Q4π

Oem(3S1) Im fem(3S1)
1

3
α2Q2π

Operator of dim. 8 Matching coefficient Im (Value)

Pem(1S0) Im gem(1S0) −
4

3
α2Q4π

Pem(3S1) Im gem(3S1) −
4

9
α2Q2π

Pem(3S1,
3 D1) Im gem(3S1,

3 D1) −
1

3
α2Q2π

Oem(1P1) Im fem(1P1) 0

Oem(3P0) Im fem(3P0) 3α2Q4π

Oem(3P1) Im fem(3P1) 0

Oem(3P2) Im fem(3P2)
4

5
α2Q4π

S8 em(1S0) Im s8 em(1S0) 0

S8 em(3S1) Im s8 em(3S1)
1

3
α2Q2π
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Operator of dim. 9 Matching coefficient Im (Value)

T
(1)′
8 em(3S1) Im t

(1)
8 em(3S1)

1

6
α2Q2π

T8 em(3P0) Im t8 em(3P0) −
3

2
α2Q4π

T8 em(3P1) Im t8 em(3P1) 0

T8 em(3P2) Im t8 em(3P2) 0

Operator of dim. 10 Matching coefficient Im (Value)

Q′
em(1S0) Im h′

em(1S0)
10

9
α2Q4π

Q′′
em(1S0) Im h′′

em(1S0)
2

5
α2Q4π

Q′
em(3S1) Im h′

em(3S1)
23

54
α2Q2π

Q′′
em(3S1) Im h′′

em(3S1)
1

9
α2Q2π

Q′
em(3S1,

3 D1) Im h′
em(3S1,

3 D1)
5

9
α2Q2π

Q′′
em(3S1,

3 D1) Im h′′
em(3S1,

3 D1)
1

12
α2Q2π

Pem(1P1) Im gem(1P1) 0

Pem(3P0) Im gem(3P0) −7α2Q4π

Pem(3P1) Im gem(3P1) 0

Pem(3P2) Im gem(3P2) −
8

5
α2Q4π

Pem(3P2,
3 F2) Im gem(3P2,

3 F2) −
20

21
α2Q4π

Qem(1D2) Im hem(1D2)
2

15
α2Q4π

Qem(3D1) Im hem(3D1)
1

12
α2Q2π

Qem(3D2) Im hem(3D2) 0

Qem(3D3) Im hem(3D3) 0
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